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J .  Phys. A Math. Gen. 27 (1994) 5187-5200. Printed in h e  UK 

Dynamics for a two-dimensional antisymmetric map 

H-P Fang 
CCAST (World Laboratory) PO Box 8730, Beijing, 100080, People’s Republic of China 
and 
Institute of Theoretical Physics, PO Box 2735. Beijing. 100080, People’s Republic of Chinat 

Received 19 Febmzxy 1994, in final form 13 June 1994 

Abstract. A two-dimensional representation of symbolic dynamics for a two-dimensional map 
with antisymmetric property is constructed. The behaviour of symmetry-breaking periodic orbits, 
symmetry-breaking bifurcations, symmetry-breaking attractors and the boundaries of basins 
between co-existing attractom  at^ then discussed using lhis representation of symbolic dpamics. 

1. Introduction 

Since the discovery of the chaotic attractor introduced by E N Lorenz [I], chaos has become 
an important concept in nearly all branches of natural sciences. The differential equations, 
which are believed to govem our natural world and may exhibit chaotic am’actors, are widely 
discussed. Among these differential equations, the Lorenz equations itself, the double- 
diffusive convection system [2] which originates from convections in the atmosphere and 
in the ocean (binary mixture) and the Duffing equations [3] which describes the damped, 
periodically forced nonlinear oscillator have received considerable attention. All of these 
systems possess a discrete symmetry. Subsequently, the orbits for these ODES are partitioned 
into two classes, the symmetric orbits and the asymmetric orbits, according to their retaining 
or not retaining the symmetry. It has been shown that a symmetric periodic orbit will first 
undergo symmeay-breaking bifurcation to a pair of asymmetric orbits of the same period 
as the original one, then enjoy period-doubling bifurcations [4]. 

A study of these ODES is greatly facilitated by the construction and study of their Po incd  
mappings on proper Poincard sections. Take, for example, the Lorenz equations 

i = u ( y  - x )  

In these equations, U =IO, b = 8/3 and r is the controlling parameter. The Poincard 
section z = r - 1 is widely used and the attractors on this plane are called the Lorenz 
attractors. Figure ] (a ,  b) shows the Poincard mapping and the first return map for r = 140. 
Figure l(b) is obtained by plotting the successive x,+l versus x, in the plane z = r - 1. 
This figure displays a sketch of a one-dimensional (ID) map with two critical points and the 
antisymmetric property (figure 2) 

X.+, =AX:  + (1 - A)x. (2) 
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F i p  1. The Poin& mapping (a) and the first return map ( b )  for r = 140 for the Lorem 
equations in the plane L = r - I .  
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Figure 2. The shape of the one-dimensional antisymmetric map zn+l = Ax: t (1 - A)x.. E 
and C denote two critical points which divide the interval [-I. I ]  into three monotonic segments 
m d e d  by 0, 1 and 2. 

where parameter A varies in 11.41. Similar behaviour is also observed for many ODES with 
antisymmetric property [Z, 31. Obviously, the attractors for the logistic map or the HBnon 
map [5 ] ,  which do not share the antisymmetric property, are qualitatively different from 
the first return maps and the Poincarh mappings for these OD&. In fact, it has already 
been found that the periodic windows, interspersed in chaotic regions for these ODES with 
antisymmebic property, can be approximately ordered as those of the ID maps with two 
critical points and antisymmetric property (see equation (2)). For the Lorenz equations, 
from r = SO up to r = 400.53 stable periodic windows are found numerically (the period- 
doubling regimes did not count), among which 47 can fit into the stable periodic windows 
for map (2) [6,71. 

Despite these observations, it is clear from the first return map shown in figure 10) 
that a I D  map cannot reveal the complex topology of the attractors for these ODES. In 
order to determine the characteristic properties of these attractors, it is necessary to discuss 
the behaviour of two-dimensional (2) attractors on proper PoincarB sections of these ODES 
directly. For the complexity of chaotic dynamics of the ODES, as that had been proposed 
by M HBnon IS], we will consider in this paper a ZD map extended from the ID map (2) as 
follows: 
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This map is also invariant under the transformation 

x + --x Y -+ -Y .  (4) 

We expected that some behaviour of the 2D attractors for these O D E  with antisymmetric 
property, such as the Lorenz equations and the Duffing equations, can be approached by 
this map. 

To study the chaotic dynamics of dynamical systems, it is widely accepted that a most 
useful way is to consider the set of unstable periodic orbits embedded in them [&13]. It was 
shown that characteristic quantities of strange amactors like Lyapunov exponents, entropies, 
dimensions and f(a) spectra can be directly related to properties of unstable periodic orbits. 
Until recently symbolic dynamics provided the most robust technique for the calculation 
and classification of unstable periodic orbits in dynamical systems [6-121. 

In this paper, we first construct a two-dimensional representation of symbolic dynamics 
for this U) map. Then we discuss the dynamics for thii map, especially that related to the 

The paper is organized as follows. In section 2, the symbolic dynamics for the map (3) 
is constructed and its validity is checked. Unlike that of the HBnon map, a ternary partition 
is convenient for this map. It has been well known that a symmetrical periodic orbit cannot 
undergo period-doubling bifurcation in co-dmension-one systems [4]. In section 3, the case 
for this system with two parameters is considered using symbolic dynamics. In section 4, 
the topology for the symmetry-breaking attractors of the map (3) is discussed. It is found 
that the chaotic dynamics for these symmetry-breaking attractors is close to 1D and can 
be approximately treated as that of ID map to some degree. In section 5, a geometric 
description of the symbolic dynamics is presented and basin boundaries between coexisting 
attractors are understood in terms of this geometric description. Finally, OUT conclusions 
are given in section 6. 

symmetry (4). 

2. Construction of symbolic dynamics for the 2D antisymmetric map (3) 

To construct the symbolic dynamics of a dynamical system, the determination of the partition 
and the ordering rules for the underlying symbolic sequences is of crucial importance. In the 
case of ID mappings, the partition is composed of all the critical points. For example, for 
the antisymmetric cubic map (2), a ternary partition marked by 5: and C divide the interval 
[-1. 11 into three monotonic branches (figure 2). The right branch to C is assigned 0, the 
left branch to and C is 1. As a consequence, 
nearly all trajectories are unambiguously encoded by infinite strings of bits S ( X )  = (~1s~. . .) 
where st is either 0, 1 or 2 [6]. Refemng to the natural ordering of the real numbers in 
the 1D interval [-1, I], the ordering rules for these symbolic strings can be defined, that 
is, considering two symbolic strings S(XI) and S(XZ) from the initial points X I  and X Z ,  

S(x1) 2 S(x2)  if and only if XI > X Z .  Analytically, these ordering rules correspond to the 
natural orderings for the ‘forward’ variables 

is assigned 2, whereas the part between 

with 

I 
Pi = {: for { ~ ~ ~ ~ a n d ~ z -  j=1 S. - 0 (mod 2) 

si = 0 
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i si = 0 
si = 1 and Est = 1 (mod 2). 
$, = 2 J=l 

or I 
Once the kneading sequence KK and K ,  (i.e. the forward symbolic sequences from the 
maximal and minimal values C and C) are determined and a(KK), a(&) are calculated, the 
grammar for a word allowed or forbidden is obtained, which is: A word S ( x )  corresponds 
to a real trajectory if and only if it satisfies 

a(&) < a(uJyS(x) ) )  < a(Kg) ?n = 0, 1,2, . . . (6) 
where U denotes the shift operator. Consequently, the characteristic quantities of strange 
attractors of map (2) for given parameters are completely determined. 

For 2D maps, if one wants to split the full phase space into parts, ID curves should be 
introduced, known as partition lines. For the H6non map, it has been verified that a binary 
generating partition is convenient, which is the set of all 'primary' tangencies between 
stable and unstable manifolds [9]. For the 2D map (3) extended from the ID antisymmetric 
cubic map, all 'primary' tangencies between stable and unstable manifolds form a ternary 
generating partition e and C. e and C is symmetric to (0,O) from the antisymmetric property 
of this 2~ map. In figure 3, the partition (dashed lines) together with the strange attractor 
for (A, 6) = (3.4,O.B) is shown. By analogy to those of the ID map (2), the letters 0, 
1 and 2 are assigned to different parts. For this 2~ map, xi depends not only on xi-1. 

1 

Y 

0 

-1 

---- 

-1 0 1 
X 

Figure 3. The atvactor and the ternary partition for the 2 4  antisymmehic cubic map for 
(A, b) = (3.4,O.Z). m e  dashed lines are pattition C and C by connecting the 'primary' 
tangent points between stable and unstable manifolds. The ternary panition splits the phase 
space into three pm as we expected. 
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but also on xi-2, so that backward sequences have to be considered. All trajectories are 
then encoded by double-infinite strings of bits S ( x ,  y) = . ‘L,. I .  s ~ z s ~ l s o  .sIs2.. . s, . . ., 
where so denotes the letter for the initial point ( x ,  y ) ,  s. denotes the letter for the nth image, 
L, the letter for the mth pre-image (each assuming the values 0, 1 or 2). and the solid dot 
indicates the ‘present’ position. Hereafter we call the part OSISZ.. . s, . . . the forward word 
from ( x ,  y ) .  and the part . . . s-, . ~~s-2s-1~0. the backward word; they are represented 
by Forw(S(x, y)) and Back(S(x, y ) ) ,  respectively. Subsequently, the ‘forward’ variables 
defined in equation (5) are 

.(S(x, Y ) )  = aCForw(S(x, Y ) ) ) .  

In order to extend the grammar for the I D  cubic map (2)  to the ZD map (3), we introduce 
‘backward’ variables defined as 

with 

s-j = 2 

s-i = 0 

s-i = 0 
or s-i = 1 

vi = { for { s-i = 1 and cjs(l - s j )  = 0 (mod 2) 

and ~ ~ ~ ( l  - si) = 1 (mod 2). 1 s-i = 2 

The space spanned by (Y and @ is called the symbolic plane. Each symbolic sequence 
S(x,  y) corresponds to a point ( a ( S ( x ,  y)), p(S(x, y ) ) )  in this symbolic plane (we will 
bearafter simply call it the point S ( x ,  y ) ) .  

As those in the Henon map, where. all topological properties can be retrieved from 
the kneading sequences (the symbolic sequences from the partition), we determine the 
grammar of this 20 antisymmetric map as follows. From the antisymmetric property 
of the map (3). only the points on need be considered to construct the pruning 
fronts. To each primary tangency P on with a doubleinfinite kneading sequence 
K = . . . S-, . . . s-2s-1~~ 0 slq. . . s, . . (with SO. which may be 1 or 2, undetermined), 
a forward variable u(K) associates with two symmetrical backward variables & ( K )  = 
p(...s-,...s-12.) and p + ( K )  = ~(...S-~...S-~I.) = 2 / 3 - & ( K ) .  Analogously to 
those in the Henon map [lo], for all allowed points (a, p )  with p E [p-(K), p + ( K ) ] ,  a 
should be less than a(K) and thus one pruning front is obtained by cutting out rectangles 
[a, pla > or(K), ,8 E [ p - ( K ) ,  p + ( K ) ] )  for all P. It is clear that all the points right to this 
pruning front are not allowed. We call the set of all these points a fundmental forbidden zone 
(m). From the antisymmetric property, the other pruning front and FFZ are symmetrical to 
above fronts with respect to the centre (I/?., 1/2) of the symbol plane. Figure 4 shows the 
symbolic plane for (A,  b)  = (3.4.0.25) in which the pruning fronts are constructed with 62 
points on E. It is clear that the pruning front is monotonic in the sub-plane with @ < 1/3. 

To check the above grammar, we select 60000 points randomly on the attractor for 
(A,  b)  = (3.4.0.25). calculate the (a, B )  values for these points which are also shown in 
figure 4. No points are contained in the FFzs although many points are veIy close to the 
pruning fronts. 
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0 
0 

Figure 4. Points representing real orbits generated from the w andsymmeIxic cubic map for 
( A ,  b) = (3.4,O.E) are shown together with the pruning fronts in lhe symbolic plane. 

From this grammar we can estimate all the admissible words. In table 1. we list all the 
'primitive' admissible words up to period eight for (A, b)  = (3.4,0.25). The 'primitive' 
words cannot be repetitions of lower cycles. 

The validity of the above grammar can be checked directly by comparing the unstable 
periodic orbits from this grammar and those by the Newton-Raphson technique. In practice 
we record a period-n orbit if the change of position after the nth iteration is smaller than a test 

Table 1. All the allowed 'primitive' periodic orbits up to period 8. The letter X stands for 1 or 
2. Only non-repeating Svings of lhe sequences are presented. And he conjugale words are not 
listed. 

Period 

1 
2 
4 
5 
6 
6 
6 
7 
7 
7 

- Allowed Sequence Period 

X 7 
ox 8 
0102 8 
01 lox 8 
OlMOX 8 
OlllOX 8 
01 12ox 8 
OllOlOX 8 
01 102ox 8 
01 1 I lox 8 

Allowed Sequence 

OlllZOX 
0020110x 
01Ou)101 
OlllOlOX 
011201ox 
0102020x 
011 IO20X 
OlllllOX 
011112ox 
0 I 1202ox 
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value E = We check the symbolic sequences for these periodic orbits one by one up to 
a period 9. The results agree exactly with those predicted by the above grammar. However, 
this technique can be applied only to short unstable cycles, since chaotic attractors exhibit 
sensitivity to initial conditions and numerical errors grow exponentially with the length of 
the cycle. Recently, another method was developed to check the availability of the grammar 
for the map with a binary partition [SI. An extended approach for the map (3) with a ternary 
partition is applied. 

Once the ordering rules and the grammar for a word allowed or forbidden are determined, 
the symbolic dynamics for this 2D map is conshucted. In what follows we discuss the 
topological property of this map with this symbolic dynamics. We focus on the behaviour of 
symmetry-breaking periodic orbits, symmetry-breaking bifurcations and symmetry-breaking 
attractors. At  last we give a geometric description of the symbolic dynamics and discuss 
the basin boundaries between coexisting attractors. 

3. The symmetry-breaking periodic orbits and symmetry-breaking bifnrcations 

It is well known that systems with symmetric property are typically associated with 
spontaneous symmetry breaking. For map (3), a symmetric periodic orbit satisfies 

n being the period of the orbit and ( x ,  y )  being an element on the orbit, and asymmetric 
orbits do not satisfy this relation. Symbolically, a symmetric orbit S ( x ,  y) will be one of 
the following forms 

where is a substring of letters 0, 1 and 2 and 2 is the conjugate of I: obtained by 
interchanging 0's and 2's but leaving 1's unchanged. Hereafter we omit the repeating strings 
of the periodic sequences and simply denote them by EO22 and 'cl 21. An asymmetric 
cycle cannot be written in any of these forms. 

For the convenience of the discussion that follows, we always let 

m = 0, &I, &2, . ' . a(um(S(x, y))) < a(S(x ,  y ) )  (10) 
where U denotes the shift operator. Forw(S(x, y ) )  is maximal in all the shifts of S(x, y ) .  
Numerically, it has been found that once a symmetry-breaking orbit is admissible, its 
antisymmetric and symmetric counterparts are allowed. We list some of them with period 
10 in table 2 for (A, b) = (3.4,0.25). 

This can be partly understood from the symbolic dynamics constructed in section 2. 
Without losing generality, we assume that there exists a symmetry-breaking orbit ZOBl. 

Table 2. Some symmetrical and symmetry-breaking periodic orbits 

Period Symmetrical words AsymmeVieal words Asymuica l  words 

IO 01 12121101 01121211M 2110l0l120 
IO 01 12M1102 OIIZMIIOI  2110201121 
10 0102021202 0102021201 21u)2oto21 
10 0102121201 OlO2121202 2120101020 
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From the antisymmetric property of the pruning fronts, the antisymmetric word C l 5 2  
exists. The symmetric counterpart of XOE 1 is X022. From equations (5) and (7), we have 

cu(.(XO22)") < a(.(XOEI)") 
/3((XOEZ)".) < j3((coEl)"coEz.). (11) 

Point (XOk2)" (X082)" is down-left to the point (CO%l)mXO%20 (CO%I)" in the 
symbolic plane. 

In the symbolic plane, 1/3-j3((C0%2)"0) is thedistance between the word (X022)" 
and partition E., whereas 1/3 - p((C08I)"XO%Z.) is the distance between the word 
(XOEI)" and partition eo. From the monotonic property of the pruning front in the 
sub-plane with ,9 < 1/3, point (XO52)" (X022)" is out of the FFZS. 

In 141, it had been proved that symmetric periodic orbits cannot undergo period-doubling 
bifurcations before symmetry breaking in symmetric systems with one parameter. In the 
map (3) with two parameters A and b, period-doubling bifurcations are also suppressed for 
symmetric periodic orbits. 

Consider a periodic orbit CO%Z. Its period-doubling word is CO%2XO%l. It is clear 
that 

cu(.(XOEl)") < a(.(xo2lX022)") 
,B((XOBI)"XO22.) < /S((XOI:lCOC2)".). (12) 

Analogously, point (.X08l)"X0520 (XOEI)" is down-left to the point (XO2180E2)"o 
(X02IX022)" in the symbolic plane. Once periodic orbit CO%ZCO%l is allowed, point 
EO51 EO21 always lies outside the m. 

In the case of ID mapping with only one kneading sequence, equation (12) ensures 
that the symmetry-breaking orbit XO%l  is allowed provided that the period-doubling 
word CO21 CO22 is admissible. Consequently, we can conclude that the period-doubling 
bifurcations must be preceded by a bifurcation to asymmetric for the symmetric periodic 
orbits. 

For the 2D mappings, the admissibility of xOElXO22 can only ensure that the point 
.XOE 10  EO21 lies outside the FFZS. There still exists the possibility that the orbit CO2 1 is 
pruned since there are infinite kneading sequences for 2~ mappings. Fortunately, it has been 
found that the topology of the attractors is almost determined by one kneading sequence 
completely when the attractor exhibits stable periodic orbits. The possibility to develop 
period-doubling bifurcations for the symmetric periodic orbits is still highly unlikely. 

4. The symmetry-breaking attractors 

In this section we discuss the symmetry-breaking attractors. We take the case for (A, 6 )  = 
(2.95.0.25) as an example. Figure 5 shows one of the symmetry-breaking attractors. The 
other symmetry-breaking attractor is symmetric to (0,O) in the ZII phase space. Figure 6 
is the corresponding symbolic plane in which the points represent real trajectories of the 
attractor in figure 5.  It is clear that the symmetry with respect to (l j2,  1/2) is also broken 
for these points. For these symmetry-breaking attractors, we find the following properties. 

(i) All the forward parts of the kneading sequences from C are leading with the following 
seven letters K, = 0102020. An unstable periodic orbit with length n < 8 cannot tell the 
difference between these kneading sequences. Thus for unstable periodic orbits with length 
n < 8, the. grammar for a word allowed or forbidden is completely determined by the 
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1 

Y 

0 

-1 
-1 0 X 1 

Figure 5. A symmeny-breaking amactor for the antisypetric cubic map (3) for ( A ,  b) = 
(2.95.0.25). The dashed lines are panition lines C and C. The dash-doned line and dotted 
lines are Ihe stable manifolds of the symnietriical period-one orbit Im and those of period-hw 
orbit (02)-, respectively, which a~ the boundaries between the basins of the W O  coexisting 
symmetry-breaking amacton. 

sequence Kj, that is, a word S ( x ,  y) corresponds to an unstable periodic orbit of the map 
(3) for (A, b)  = (2.95,O.Z) if and only if it satisfies 

u(Ej) < u ( d " ( ~ o n v ( ~ ( x ,  y ) ) ) )  < CY(K,) m = 0,1,2,. . . (13) 

where Ej is the conjugate of Kj. This grammar is consistent with that for the I D  
antisymmetric cubic map (2) with a kneading sequence Kj. Thus we can say that the 
topology of the symmetry-breaking attractors of the 2D map (3) is so close to 1D that 
it can be approximately treated as that of the 1D map with antisymmetric property and, 
to some degree, two critical points. Numerically we find that all the symmetry-breaking 
attractors possess this property. It should be noted that unstable periodic orbits in symmetry- 
breaking attractors with length up to 20 are completely determined by one forward sequence 
Kj = 01020101 120101010101 for (A ,  b) = (2.93,O.Z). 

(ii) The two symmetry-breaking attractors are antisymmetric to each other with respect 
to the original point (0.0). The stable manifolds of the symmetrical period-one orbit 1- 
(dash-dotted line in figure 5) and those of period-two orbit (02)- (dotted lines) are the 
boundaries between their attracting basins. 

(iii) Symbolically, the trajectories on these two symmetry-breaking attractors share 
grammar to determine which word is allowed or forbidden. The boundaries are *Im, 
0(02)~ ,  012(02)~. 0(20 )~  and 010(20)~. All the allowed symbolic sequences S ( x ,  y )  
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" L 
Figure 6. The symbolic plane for the attractor shown in figure 5. Points represent real 
orbits. The dolted line =presents a = a(.10(02)m) and dashed lines are a = a(.(02)m) 
and a = a(.(2O)O5). 

belonging to the attractor shown in figure 5 satisfy 

cr(cr'"(Fonu(S(x, y ) ) ) )  z a ( 0 ( 2 0 ) ~ )  m = 0. f l ,  f 2 , .  . . . (14) 
All the other allowed symbolic sequences satisfy 

01(o"(Forw(S(x, y)))) < ~ ~ ( 4 0 2 ) ~ )  m = 0, f l ,  f 2 , .  . . (15) 
belonging to the other symmetry-breaking amactor. We have checked this directly with 
a Newton procedure up to period 10. This observation is most clearly expressed in the 
symbolic plane. In figure 6, lines 01 = 01(0(02)~)  and 01(0 (20 )~ )  are also shown as dashed 
lines. It is clear that all the points lie in the region with 0 1 ( 0 ( 2 0 ) ~ )  < a < a(olm) = 0.5 or 
01(0(02)~)  < 01 < ~ ( 0 0 ~ )  = 1. We will give a geometric description for this observation 
in the next section. 

5. A geometric description of the symbolic dynamics and the boundaries of basins 
between coexisting attractors 

In 1987, Gu [14] introduced the ideas of most stable manifolds (MSMS) and backward most 
stable manifolds (BMSMS). An MSM is a submanifold in the basin of an attractor, such that 
all the points on this submanifold will converge to a single point with the highest possible 
exponential rate (i.e. the most negative Lyapunov exponent of the attractor). Analogously, 
a BMSM is also a submanifold. On this submanifold, all the points iterating backward will 
converge to a single point with the highest possible exponential rate. 
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The MSMs and BMSMs are extensions of the stable and unstable manifolds of saddles and 
periodic orbits. If one point of an MSM falls on a stable manifold of a saddle or periodic 
orbit, this MSM is consistent with this stable manifold. All stable manifolds of saddles and 
periodic orbits form an invariant subset of MSMs and all unstable manifolds of saddles and 
periodic orbits form an invariant subset of BMSMs. Consequently, all 'primary' tangencies 
between stable and unstable manifolds form a subset of the 'primary' tangencies between 
MSMs and BMSMs. 

The MSM and BMSM have a close relationship with symbolic dynamics. Since all the 
points on an MSM will converge to a single point, all the points sharing a forward sequence 
must fall on an MSM. Numerically, it has been found that all the points on an MSM share a 
forward word provided there are no tangency points between them. These tangency points 
are the images and pre-images of the 'primary' tangency points between MSMs and BMSMs. 
The sub-space composed of all these points is called a forward foliation m. Analogously, 
all the points sharing a backward sequence form a backward foliation ( ~ n .  The MSMS and 
BMSMs provide a technique to trace the points with the same forward or backward word in 
the phase space. 

In figure 7, two BFs from the unstable symmetrical periodic orbit (02)m and some FFs 
are shown. The forward words for these FFS are also marked in the figure. It can be checked 
directly that all the FFs are well ordered on the BFs obeying the ordering rules in equation 
(5). In fact, all FFs are ordered according to equation (5) on each BF and all BFs are ordered 
according to equation (7) on each BF. FFs and BFs provide a geometric background on the 
ordering rules (5) and (7) for forward and backward words in section 2. 

This geometric description can be most clearly understood in the following piecewise 
map: 

where 
1 + d  

sgn(x.) E .  = - c < Ixill < 1 1 - c  
c + d  

e. = o  I 
In these equations c, d ,  b are parameters with all their values between 0 and 1, and 

sgn(x.) denotes the sign of x,. 

sgn(x) = [ b if [:z: 
This piecewise linear map possesses the same antisymmetry as map (3). Note that both 

map (3) and map (16) share two critical points when b approaches 0. For this piecewise 
linear map, both BFs and FFs are straight-line segments. We can explicitly define the 
orderings for forward and backward words by left or right, up or down of the corresponding 
foliations [IS], which gives the ordering rules defined above for map (3). 

It is well known that a basin of an attractor is related to stable manifolds. In the case 
of the symmetry-breaking attractors considered in section 4, the basin boundaries between 
these two symmetry-breaking attractors are the stable manifolds of the symmetrical period- 
one orbit lm and those of the period-two orbit (02)m. Symbolically, these basin boundaries 
correspond to FFS for words *Im, 0 ( 0 2 ) ~ ,  012(02)~, 0 ( 2 0 ) ~  and 010(20)~. It can be 

- 1  x e o .  
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-1 X 0 

Figure 7. Two BFS and some FFS of the map (3) for (A, b) = (2.95,0.25). Solid lines are the 
BR from the unstable symmetrical periodic ohit (02)m. The dashed lines are the FE which are 
well ordered on the BFr. The dash-dotted line is the pre-image of the partition line e which 
cuts the MSMn into forward foliations. The diamond is a 'primary' tangency on the BMSM from 
(M)O1 which cuts the BMSM into B F ~  (20)" and (20)m01.. 

checked directly that a point belongs to the basin of the amactor shown in figure 5 if and 
only if its symbolic sequence S(x,  y )  satisfies one of the following three conditions, 

or(010(20)~) z or(Forw(S(x, y ) )  5 ~ ( 4 2 0 ) ~ )  (17) 

or 

or(Forw(S(x, y ) )  > c ~ ( o ( 0 2 ) ~ ) .  (19) 
Now we consider the symbolic sequences on the attractor in figure 5 explicitly. Since 

the down part of the attractor in this figure lies in the region right to the FF .(02)m, the 
words S(x.  y )  of this part satisfy the equation 

S ( x ,  y )  z .(02)-J. (20) 
Likewise, the other part of the symmetry-breaking attractor lies in the region between the 
FF 010(20)~ and FF 0 ( 2 0 ) ~ .  The words S(x, y )  of this part satisfy the equation 

(21) 
In figure 6,  the dotted line represents the line or = 010(20)~. It is clear that all the points 
satisfy equations (20) or (21) in the symbolic plane. 

.10(20)m > S ( x ,  y )  > O(20)m. 
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6. Conclusions 

We have constructed a 2 0  representation of the symbolic dynamics for the 2D antisymmetric 
map (3). A symmetrical ternary partition is convenient for this map. Bifurcation in 
symmetric systems is typically associated with spontaneous symmetry breaking. We discuss 
the behaviour of the symmetry-breaking periodic orbits, symmetry-breaking bifurcations 
and symmetry-breaking attractors with this symbolic dynamics. It is still highly unlikely 
to develop period-doubling bifurcations for the symmetric periodic orbits for this map with 
two parameters. We have used the forward foliations and backward foliations to understand 
the symbolic dynamics constructed and the basin boundaries between coexisting athactors. 

It should be noted that the discussion in the present work is universal for a large class 
of dynamical systems with antisymmetry; the map considered in this paper, the Poincari 
mappings of the Lorenz equations, the Duffing equations and the 5-mode truncated double 
diffusive convection systems are members of this class. Recently, we have succeeded 
in applying the symbolic dynamics constructed in this paper to the Poincare mappings 
of Lorenz equations and the five-mode truncated double-diffusive convection system, 
determining the topology for these systems. Tkey will be presented elsewhere. 
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